Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec 15;372(6507):695-8.
doi: 10.1038/372695a0.

A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo

Affiliations

A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo

M Liuzzi et al. Nature. .

Abstract

Herpes simplex viruses (HSV) types 1 and 2 encode their own ribonucleotide reductases (RNRs) (EC 1.17.4.1) to convert ribonucleoside diphosphates into the corresponding deoxyribonucleotides. Like other iron-dependent RNRs, the viral enzyme is formed by the reversible association of two distinct homodimeric subunits. The carboxy terminus of the RNR small subunit (R2) is critical for subunit association and synthetic peptides containing these amino-acid sequences selectively inhibit the viral enzyme by preventing subunit association. Increasing evidence indicates that the HSV RNR is important for virulence and reactivation from latency. Previously, we reported on the design of HSV RNR inhibitors with enhanced inhibitory potency in vitro. We now report on BILD 1263, which to our knowledge is the first HSV RNR subunit-association inhibitor with antiviral activity in vivo. This compound suppresses the replication of HSV-1, HSV-2 and acyclovir-resistant HSV strains in cell culture, and also strongly potentiates the antiviral activity of acyclovir. Most importantly, its anti-herpetic activity is shown in a murine ocular model of HSV-1-induced keratitis, providing an example of potent nonsubstrate-based antiviral agents that prevent protein-protein interactions. The unique antiviral properties of BILD 1263 may lead to the design of new strategies to treat herpesvirus infections in humans.

PubMed Disclaimer

MeSH terms

LinkOut - more resources