Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Sep 1;75(5):521-38.
doi: 10.1016/0049-3848(94)90227-5.

Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation

Affiliations

Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation

B Blombäck et al. Thromb Res. .

Abstract

The porosity, fiber dimension and architecture of fibrin gels formed in recalcified plasma on addition of thrombin are, within a certain range of thrombin concentrations, determined by the initial rate of fibrinogen activation. Furthermore, the initial network formed in this range creates the scaffold into which subsequently activated fibrinogen molecules are deposited. Change in thrombin concentration that occurs during gelation, as a result of indigenous thrombin generation in plasma, does not qualitatively alter this scaffold. The formation of the networks obeys a more complex rule when low amounts of thrombin are added or with recalcified plasma without added thrombin. These networks are tighter than would be expected from the initial rate of fibrinogen activation. In this case an extremely porous network is probably formed initially, followed by formation of a secondary, superimposed network of a less porous architectural quality. The latter structure appears to be governed by the rate of indigenous generation in plasma of thrombin-like enzymes in combination with the particular type of fibrinmonomers being produced. In addition our findings establish the rules for proper determination of gel structures in clinical plasma samples. The sequelae of a variety of clot structures that may be formed in vivo are discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources