Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Dec;13(6):1395-402.
doi: 10.1016/0896-6273(94)90424-3.

Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors

Affiliations
Comparative Study

Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors

C Bouzat et al. Neuron. 1994 Dec.

Abstract

Structure-function studies have identified key functional motifs in the acetylcholine receptor, including residues that contribute to the ion channel and to the ligand-binding sites. Little is known, however, about determinants of channel gating kinetics. To identify structural correlates of gating, we examined the structural basis of the fetal-to-adult decrease in channel open time conferred by the presence of the epsilon subunit in place of the gamma subunit. By constructing chimeras composed of segments of the epsilon and gamma subunits, we show that the main determinant of this kinetic change is a 30 residue segment of a predicted amphipathic helix located between transmembrane domains M3 and M4. Further subdividing the amphipathic helix revealed that either multiple residues or its overall conformation confers this regulation of channel kinetics. We also show that L440 and M442, conserved residues within M4 of the gamma subunit, contribute to long duration openings characteristic of the fetal receptor.

PubMed Disclaimer

Publication types

LinkOut - more resources