Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;90(6):2853-8.
doi: 10.1161/01.cir.90.6.2853.

Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation

Affiliations

Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation

D M Gilligan et al. Circulation. 1994 Dec.

Abstract

Background: Endothelium-derived nitric oxide is an important modulator of resting vascular tone in animals and humans. However, the contribution of nitric oxide to exercise-induced vasodilation is unknown.

Methods and results: The effect of NG-monomethyl-L-arginine (L-NMMA), an inhibitor of nitric oxide synthesis, on exercise-induced vasodilation was studied in 18 healthy subjects (mean +/- SD, 40 +/- 10 years; 10 women). Acetylcholine was used to test the efficacy of L-NMMA in inhibiting stimulation of nitric oxide synthesis and sodium nitroprusside to test the specificity of L-NMMA in inhibiting endothelium-dependent vasodilation. Intermittent handgrip exercise and infusions of acetylcholine and sodium nitroprusside were performed during intra-arterial infusion of 5% dextrose (control) and L-NMMA (4 to 16 mumol/min). Forearm blood flow was determined by strain-gauge plethysmography. Forearm oxygen extraction was measured from arterial and venous oxygen saturations. In a separate study, 10 subjects performed exercise during infusions of 5% dextrose, L-arginine (the substrate for nitric oxide production), and D-arginine (the stereoisomer that is not a substrate for nitric oxide production). L-NMMA reduced exercise blood flow by 7 +/- 13% (P = .04), increased exercise resistance by 18 +/- 20% (P = .02), and increased exercise oxygen extraction by 16 +/- 17% (P < .001). The degree of inhibition of acetylcholine-induced vasodilation with L-NMMA correlated positively with the degree of reduction in exercise blood flow (r = .55, P = .02). The highest dose of L-NMMA (16 mumol/min) produced the greatest effect; exercise blood flow was reduced by 11 +/- 14% (P = .03), and vascular resistance increased by 26 +/- 23% (P = .005). L-NMMA did not affect the forearm vasodilation produced by sodium nitroprusside. Exercise blood flow, resistance, and oxygen extraction were not significantly modified by infusions of either L- or D-arginine.

Conclusions: Inhibition of nitric oxide synthesis reduces exercise-induced vasodilation in the human forearm, indicating that nitric oxide plays a role in exercise-induced vasodilation. Increased availability of nitric oxide substrate does not enhance exercise-induced vasodilation in healthy subjects. These findings have important implications for disease states in which endothelium-derived nitric oxide production is impaired.

PubMed Disclaimer

LinkOut - more resources