Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Dec;36(6):814-22.
doi: 10.1002/ana.410360604.

Trinucleotide repeat expansion in neurological disease

Affiliations
Review

Trinucleotide repeat expansion in neurological disease

A R La Spada et al. Ann Neurol. 1994 Dec.

Abstract

Expansion of trinucleotide repeats is now recognized as a major cause of neurological disease. At least seven disorders result from trinucleotide repeat expansion: X-linked spinal and bulbar muscular atrophy (SBMA), two fragile X syndromes of mental retardation (FRAXA and FRAXE), myotonic dystrophy, Huntington's disease, spinocerebellar ataxia type 1 (SCA1), and dentatorubral-pallidoluysian atrophy (DRPLA). The expanded trinucleotide repeats are unstable, and the phenomenon of anticipation, i.e., worsening of disease phenotype over successive generations, correlates with increasing expansion size. In this review, we compare the clinical and molecular features of the trinucleotide repeat diseases, which may be classified into two types. Fragile X and myotonic dystrophy are multisystem disorders usually associated with large expansions of untranslated repeats, while the four neurodegenerative disorders, SBMA, Huntington's disease, SCA1, and DRPLA, are caused by smaller expansions of CAG repeats within the protein coding portion of the gene. CAG repeats encode polyglutamine tracts. Polyglutamine tract expansion thus appears to be a common mechanism of inherited neurodegenerative disease. Although polyglutamine tract lengthening presumably has a toxic gain of function effect in the CAG trinucleotide repeat disorders, the basis of this neuronal toxicity remains unknown.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources