Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec 1;304 ( Pt 2)(Pt 2):431-40.
doi: 10.1042/bj3040431.

Antigen and thapsigargin promote influx of Ca2+ in rat basophilic RBL-2H3 cells by ostensibly similar mechanisms that allow filling of inositol 1,4,5-trisphosphate-sensitive and mitochondrial Ca2+ stores

Affiliations

Antigen and thapsigargin promote influx of Ca2+ in rat basophilic RBL-2H3 cells by ostensibly similar mechanisms that allow filling of inositol 1,4,5-trisphosphate-sensitive and mitochondrial Ca2+ stores

H Ali et al. Biochem J. .

Abstract

In single, Fura 2-loaded RBL-2H3 cells, antigen and thapsigargin depleted the same intracellular pool of Ca2+ in the absence of external Ca2+; provision of external Ca2+ induced immediate increases in levels of free Ca2+ ([Ca2+]i). These increases were dependent on the presence of external Ca2+ and, presumably, on influx of Ca2+ across the cell membrane. Both stimulants enhanced intracellular accumulation of 45Ca2+ through ostensibly similar mechanisms because accumulation was blocked to similar extents by various multivalent cations or by depolarization with K+. Because thapsigargin blocked reuptake of Ca2+ into inositol 1,4,5-trisphosphate sensitive stores, uptake occurred independently of the refilling of these stores. Uptake was dependent instead on sequestration of 45Ca2+ in a pool of high capacity that was insensitive to thapsigargin, caffeine, GTP and inositol 1,4,5-trisphosphate but sensitive to ionomycin and mitochondrial inhibitors. The existence of an inositol 1,4,5-trisphosphate-insensitive pool was also apparent in permeabilized cells; at 0.1 microM [Ca2+]i, uptake of 45Ca2+ was largely confined (> 80%) to the inositol 1,4,5-trisphosphate-sensitive pool, but at 2 microM [Ca2+]i uptake was largely (> 60%) into the inositol 1,4,5-trisphosphate-insensitive pool. Provision of mitochondrial inhibitors along with thapsigargin to block uptake into both pools, did not impair the thapsigargin-induced increase in [Ca2+]i or influx of Ca2+, as indicated by changes in Fura 2 fluorescence, but did block the intracellular accumulation of 45Ca2+. The studies illustrate the utility of simultaneous measurements of [Ca2+]i and 45Ca2+ uptake for a full accounting of Ca2+ homoeostasis as exemplified by the ability to distinguish between influx and mitochondrial uptake of Ca2+.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1990 Jan 15;265(2):745-53 - PubMed
    1. J Biol Chem. 1989 Nov 25;264(33):19730-9 - PubMed
    1. Am J Physiol. 1990 Feb;258(2 Pt 1):C217-26 - PubMed
    1. Physiol Rev. 1990 Apr;70(2):391-425 - PubMed
    1. Cell Calcium. 1990 Feb-Mar;11(2-3):75-83 - PubMed