Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec 20;33(50):15001-7.
doi: 10.1021/bi00254a008.

Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents

Affiliations

Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents

M M Benning et al. Biochemistry. .

Abstract

Organophosphates, such as parathion and paraoxon, constitute the largest class of insecticides currently used in industrialized nations. In addition, many of these compounds are known to inhibit mammalian acetylcholinesterases thereby acting as nerve agents. Consequently, organophosphate-degrading enzymes are of considerable interest in light of their ability to detoxify such compounds. Here we report the three-dimensional structure of such an enzyme, namely, phosphotriesterase, as determined by single crystal X-ray diffraction analysis to 2.1-A resolution. Crystals employed in this investigation belonged to the space group P2(1)2(1)2 with unit cell dimensions of a = 80.3 A, b = 93.4 A, and c = 44.8 A and one molecule per asymmetric unit. The structure was solved by multiple isomorphous replacement with two heavy-atom derivatives and refined to a crystallographic R factor of 18.0%. As observed in various other enzymes, the overall fold of the molecule consists of an alpha/beta barrel with eight strands of parallel beta-pleated sheet. In addition, there are two antiparallel beta-strands at the N-terminus. The molecular model of phosphotriesterase presented here provides the initial structural framework necessary toward understanding the enzyme's broad substrate specificities and its catalytic mechanism.

PubMed Disclaimer

Publication types

LinkOut - more resources