Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec 1;226(2):547-54.
doi: 10.1111/j.1432-1033.1994.tb20079.x.

A unified pathway for the degradation of ornithine decarboxylase in reticulocyte lysate requires interaction with the polyamine-induced protein, ornithine decarboxylase antizyme

Affiliations
Free article

A unified pathway for the degradation of ornithine decarboxylase in reticulocyte lysate requires interaction with the polyamine-induced protein, ornithine decarboxylase antizyme

E Mamroud-Kidron et al. Eur J Biochem. .
Free article

Abstract

Recent studies have provided convincing evidence to add to a number of earlier observations suggesting that the rapid intracellular degradation of mammalian ornithine decarboxylase (ODC) is further accelerated by the action of ornithine decarboxylase antizyme (ODC-Az), a polyamine-induced protein. However, the mechanism whereby ODC-Az exerts its effect in this proteolytic process is mostly unknown. Here, by using reticulocyte-lysate-based synthesis and degradation systems, we demonstrate that interaction of ODC-Az with ODC results in two related outcomes: (a) ODC is inactivated as a result of its monomerization, and (b) ODC degradation is dramatically accelerated. While ODC inactivation requires the integrity of the ODC-Az binding site of ODC and the ODC binding site of ODC-Az, acceleration in ODC degradation also requires the previously characterized carboxyl-terminal destabilizing segment of ODC and a specific segment of ODC-Az that may be functionally distinct from that required for ODC binding. Interestingly, an active ODC variant with a mutant ODC-Az binding site is stable under basal degradation conditions. This, together with the ability of anti-(ODC-Az) antibody to specifically inhibit the basal degradation of ODC in the lysate, suggests that ODC-Az is an essential general mediator of ODC degradation. Based on these observations, we propose a model for the degradation of ODC which always require interaction with antizyme.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources