The high potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans is competent in photosynthetic electron transfer
- PMID: 8001683
- DOI: 10.1016/0014-5793(94)01334-w
The high potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans is competent in photosynthetic electron transfer
Abstract
The functional role of the High Potential Iron-sulfur Protein (HiPIP) from the photosynthetic bacterium Rhodoferax fermentans was investigated. We demonstrated that the HiPIP increased the rate of light-induced oxygen reduction mediated by the photosynthetic reaction center (RC); this stimulation reached half-saturation at [HiPIP]/[RC] ca. 15. The capability of the HiPIP in delivering electrons to the reaction center of Rhodoferax fermentans was demonstrated through kinetic spectrophotometry of cytochrome c-556 oxidation in the presence or in the absence of HiPIP. It is concluded that the HiPIP is competent in the photosynthetic electron transfer chain of Rhodoferax fermentans.
Similar articles
-
Isolation, characterization, and functional role of the high-potential iron-sulfur protein (HiPIP) from Rhodoferax fermentans.Arch Biochem Biophys. 1995 Oct 1;322(2):313-8. doi: 10.1006/abbi.1995.1469. Arch Biochem Biophys. 1995. PMID: 7574702
-
Kinetics of photo-induced electron transfer from high-potential iron-sulfur protein to the photosynthetic reaction center of the purple phototroph Rhodoferax fermentans.Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6998-7002. doi: 10.1073/pnas.93.14.6998. Proc Natl Acad Sci U S A. 1996. PMID: 8692932 Free PMC article.
-
HiPiP oxido-reductase activity in membranes from aerobically grown cells of the facultative phototroph Rhodoferax fermentans.FEBS Lett. 1995 Nov 20;375(3):197-200. doi: 10.1016/0014-5793(95)01188-k. FEBS Lett. 1995. PMID: 7498498
-
Ultra-high-resolution structure and charge-density analysis of high-potential iron-sulfur protein.FEBS J. 2017 Jul;284(14):2163-2166. doi: 10.1111/febs.14036. Epub 2017 Feb 17. FEBS J. 2017. PMID: 28165666 Review.
-
Structural basis of bacterial photosynthetic reaction centers.J Biochem. 2001 Sep;130(3):319-29. doi: 10.1093/oxfordjournals.jbchem.a002989. J Biochem. 2001. PMID: 11530006 Review.
Cited by
-
Structural analysis of the HiPIP from the acidophilic bacteria: Acidithiobacillus ferrooxidans.Extremophiles. 2006 Jun;10(3):191-8. doi: 10.1007/s00792-005-0486-8. Epub 2006 Apr 8. Extremophiles. 2006. PMID: 16604275
-
Identifying sequence determinants of reduction potentials of metalloproteins.J Biol Inorg Chem. 2013 Aug;18(6):599-608. doi: 10.1007/s00775-013-1004-6. Epub 2013 May 21. J Biol Inorg Chem. 2013. PMID: 23690205 Free PMC article.
-
Periplasmic electron carriers and photo-induced electron transfer in the photosynthetic bacterium Ectothiorhodospira sp.Photosynth Res. 2000;65(1):53-62. doi: 10.1023/A:1006486307473. Photosynth Res. 2000. PMID: 16228470
-
Tunneling Mechanisms of Quinones in Photosynthetic Reaction Center-Light Harvesting 1 Supercomplexes.Small Sci. 2024 Sep 15;4(11):2400188. doi: 10.1002/smsc.202400188. eCollection 2024 Nov. Small Sci. 2024. PMID: 40213462 Free PMC article.
-
The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1.J Bacteriol. 2007 Mar;189(5):1765-73. doi: 10.1128/JB.00776-06. Epub 2006 Dec 22. J Bacteriol. 2007. PMID: 17189359 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources