Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Aug;77(2):774-81.
doi: 10.1152/jappl.1994.77.2.774.

Reversal of pulmonary capillary ischemia-reperfusion injury by rolipram, a cAMP phosphodiesterase inhibitor

Affiliations

Reversal of pulmonary capillary ischemia-reperfusion injury by rolipram, a cAMP phosphodiesterase inhibitor

J W Barnard et al. J Appl Physiol (1985). 1994 Aug.

Abstract

Isoproterenol (ISO) and forskolin, agents that increase adenosine 3',5'-cyclic monophosphate (cAMP) via adenylyl cyclase activation, reverse lung injury associated with increased microvascular permeability. We studied the role of rolipram, a relatively isozyme-selective cAMP phosphodiesterase (PDE) inhibitor, in reversing increased capillary permeability due to ischemia-reperfusion (I/R), a form of oxidant injury in the lung, by using the isolated perfused rat lung model. Rolipram (2 microM) administered after 45 min of ischemia and 45 min of reperfusion reduced I/R-increased permeability as measured by the capillary filtration coefficient to control lung values. Computer image analysis of air space edema and perivascular cuffing, as well as wet-to-dry weight ratios, confirms the permeability reversal by rolipram administration. Rolipram inhibition of cAMP PDE in the lung was assessed by using [3H]adenine prelabeling adapted for the whole lung and perfusate [3H]cAMP accumulation. Rolipram failed to increase perfusate cAMP alone but dramatically increased perfusate cAMP above ISO alone. Dose-response relationships of ISO or rolipram show a close correlation of the half-maximal effective dose (ED50) for injury reversal and perfusate cAMP production. The combination of rolipram and ISO produced synergistic reversal of I/R injury. We conclude that reversal of I/R-induced increased microvascular permeability can be achieved with rolipram and that the mechanism of action of rolipram is probably through PDE isozyme-selective inhibition. The similarity of the ED50 values for cAMP efflux and reversal of permeability increases also supports a close coupling between cAMP accumulation and endothelial cell permeability.

PubMed Disclaimer

Publication types

LinkOut - more resources