Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jun 15;300 ( Pt 3)(Pt 3):673-83.
doi: 10.1042/bj3000673.

Ca2+ release by inositol 1,4,5-trisphosphate is blocked by the K(+)-channel blockers apamin and tetrapentylammonium ion, and a monoclonal antibody to a 63 kDa membrane protein: reversal of blockade by K+ ionophores nigericin and valinomycin and purification of the 63 kDa antibody-binding protein

Affiliations

Ca2+ release by inositol 1,4,5-trisphosphate is blocked by the K(+)-channel blockers apamin and tetrapentylammonium ion, and a monoclonal antibody to a 63 kDa membrane protein: reversal of blockade by K+ ionophores nigericin and valinomycin and purification of the 63 kDa antibody-binding protein

F O'Rourke et al. Biochem J. .

Abstract

Ins(1,4,5)P3-induced Ca2+ release from platelet membrane vesicles was blocked by apamin, a selective inhibitor of low-conductance Ca(2+)-activated K+ channels, and by tetrapentylammonium ion, and was weakly inhibited by tetraethylammonium ion. Other K(+)-channel blockers, i.e. charybdotoxin, 4-aminopyridine and glybenclamide were ineffective. A monoclonal antibody (mAb 213-21) obtained by immunizing mice with the InsP3-sensitive membrane fraction from platelets also blocked Ca2+ release by InsP3 from membrane vesicles obtained from platelets, cerebellum, aortic smooth muscle, HEL cells and sea-urchin eggs. ATP-dependent Ca2+ uptake and binding of [3H]InsP3 to platelet membranes was unaffected by either K(+)-channel blockers or mAb 213-21. Blockade of Ca2+ release by apamin, tetrapentylammonium and mAb 213-21 was not affected by the Na+/H+ carrier monensin or the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), but could be completely reversed by the K+/H+ ionophore nigericin and partially reversed by the K+ carrier valinomycin. The antibody-binding protein (ABP) solubilized from platelets, cerebellum, and smooth muscle chromatographed identically on gel filtration, anion-exchange and heparin-TSK h.p.l.c. ABP was purified to apparent homogeneity from platelets and aortic smooth muscle as a 63 kDa protein by immunoaffinity chromatography on mAb 213-21-agarose. These results suggest that optimal Ca2+ release by InsP3 from platelet membrane vesicles may require the tandem function of a K+ channel. A counterflow of K+ ions could prevent the build-up of a membrane potential (inside negative) that would tend to oppose Ca2+ release. The 63 kDa protein may function to regulate K+ permeability that is coupled to the Ca2+ efflux via the InsP3 receptor.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1989 Nov 2;342(6245):87-9 - PubMed
    1. Science. 1992 Apr 24;256(5056):532-5 - PubMed
    1. EMBO J. 1990 Jan;9(1):61-7 - PubMed
    1. Pflugers Arch. 1989 Oct;415(1):63-71 - PubMed
    1. Prog Clin Biol Res. 1990;334:205-30 - PubMed

Publication types