Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jun;12(6):1207-21.
doi: 10.1016/0896-6273(94)90438-3.

Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras

Affiliations

Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras

L B Rosen et al. Neuron. 1994 Jun.

Abstract

A pathway by which calcium influx through voltage-sensitive calcium channels leads to mitogen-activated protein kinase (MAPK) activation has been characterized. In PC12 cells, membrane depolarization leading to calcium influx through L-type calcium channels activates the dual specificity MAPK kinase MEK1, which phosphorylates and activates MAPK. Calcium influx leads within 30 s to activation of the small guanine nucleotide-binding protein Ras. Moreover, activation of MAPK in response to calcium influx is inhibited by the dominant negative mutant RasAsn17, indicating that Ras activity is required for calcium signaling to MAPK. Ras is also activated by release of calcium from intracellular stores and by membrane depolarization of primary cortical neurons. The pleiotropic regulatory potential of both Ras and the MAPK pathway suggests that they may be central mediators of calcium signaling in the nervous system.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources