Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jun 28;33(25):7760-7.
doi: 10.1021/bi00191a003.

Exchange kinetics of individual amide protons in 15N-labeled helical peptides measured by isotope-edited NMR

Affiliations

Exchange kinetics of individual amide protons in 15N-labeled helical peptides measured by isotope-edited NMR

C A Rohl et al. Biochemistry. .

Abstract

Amide proton exchange measured by one-dimensional 15N-edited proton NMR has been used to probe helical structure in an alanine-based peptide. This study is the first report of individual peptide NH exchange rates determined in a simple, repeating sequence peptide whose helical structure can be predicted by helix-coil theory. Measured protection factors directly demonstrate that the ends of the helix are frayed. The protection factors are compared to the Lifson-Roig theory, modified to include N-capping, using known values for helix propensities and N-cap propensities. Base-catalyzed exchange rates are shown to measure the extent of hydrogen bonding of the peptide NHs, and the results are fitted by a simple model in which hydrogen bonding of the peptide NH group provides protection and no exchange occurs from the hydrogen-bonded state. Protection from acid-catalyzed exchange correlates with hydrogen bonding by both the NH and CO groups of a peptide unit: the data are fitted by a model in which exchange occurs only when both hydrogen bonds formed by a peptide unit are broken. This result indicates that acid-catalyzed exchange occurs by the O-protonation mechanism, in agreement with earlier work [Perrin & Arrhenius (1982) J. Am. Chem. Soc. 104, 6693-6696; Perrin et al. (1984) J. Am. Chem. Soc. 106, 2749-2753; Tüchsen & Woodward (1985) J. Mol. Biol. 185, 421-430].

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources