Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jun;50(3):255-71.
doi: 10.1016/0301-4622(93)e0094-l.

Electrostatic effects in short superhelical DNA

Affiliations

Electrostatic effects in short superhelical DNA

M O Fenley et al. Biophys Chem. 1994 Jun.

Abstract

We present Monte Carlo simulations of the equilibrium configurations of short closed circular DNA that obeys a combined elastic, hard-sphere, and electrostatic energy potential. We employ a B-spline representation to model chain configuration and simulate the effects of salt on chain folding by varying the Debye screening parameter. We obtain global equilibrium configurations of closed circular DNA, with several imposed linking number differences, at two salt concentrations (specifically at the extremes of no added salt and the high salt regime), and for different chain lengths. Minimization of the composite elastic/long-range potential energy under the constraints of ring closure and fixed chain length is found to produce structures that are consistent with the configurations of short supercoiled DNA observed experimentally. The structures generated under the constraints of an electrostatic potential are less compact than those subjected only to an elastic term and a hard-sphere constraint. For a fixed linking number difference greater than a critical value, the interwound structures obtained under the condition of high salt are more compact than those obtained under the condition of no added salt. In the case of no added salt, the electrostatic energy plays a dominant role over the elastic energy in dictating the shape of the closed circular DNA. The DNA supercoil opens up with increasing chain length at low salt concentration. A branched three-leaf rose structure with a fixed linking number difference is higher in energy than the interwound form at both salt concentrations employed here.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources