Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1994 Jul;43(7):920-8.
doi: 10.2337/diab.43.7.920.

Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production

Affiliations
Clinical Trial

Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production

G Perriello et al. Diabetes. 1994 Jul.

Abstract

To establish the antihyperglycemic mechanisms of metformin in non-insulin-dependent diabetes mellitus (NIDDM) independently of the long-term, aspecific effects of removal of glucotoxicity, 21 NIDDM subjects (14 obese, 7 nonobese) were studied on two separate occasions, with an isoglycemic (plasma glucose approximately 9 mM) hyperinsulinemic (two-step insulin infusion, 2 h each, at the rate of 4 and 40 mU.m-2.min-1) clamp combined with [3-3H]glucose infusion and indirect calorimetry, after administration of either metformin (500 mg per os, at -5 and -1 h before the clamp) or placebo. Compared with placebo, hepatic glucose production (HGP) decreased approximately 30% more after metformin (from 469 +/- 50 to 330 +/- 54 mumol/min), but glucose uptake did not increase. Metformin suppressed free fatty acids (FFAs) by approximately 17% (from 0.42 +/- 0.04 to 0.35 +/- 0.04 mM) and lipid oxidation by approximately 25% (from 4.5 +/- 0.4 to 3.4 +/- 0.4 mumol.kg-1.min-1) and increased glucose oxidation by approximately 16% (from 16.2 +/- 1.4 to 19.3 +/- 1.3 mumol.kg-1.min-1) compared with placebo (P < 0.05), but did not affect nonoxidative glucose metabolism, protein oxidation, or total energy expenditure. Suppression of FFA and lipid oxidation after metformin correlated with suppression of HGP (r = 0.70 and r = 0.51, P < 0.001). The effects of metformin in obese and nonobese subjects were no different. We conclude that the specific, antihyperglycemic effects of metformin in the clinical condition of hyperglycemia in NIDDM are primarily due to suppression of HGP, not stimulation of glucose uptake, and are mediated, at least in part, by suppression of FFA and lipid oxidation.

PubMed Disclaimer

Publication types

MeSH terms