Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jul;14(4):581-90.
doi: 10.1038/jcbfm.1994.72.

Blockade of nitric oxide synthesis inhibits hippocampal hyperemia in kainic acid-induced seizures

Affiliations

Blockade of nitric oxide synthesis inhibits hippocampal hyperemia in kainic acid-induced seizures

A S Rigaud-Monnet et al. J Cereb Blood Flow Metab. 1994 Jul.

Abstract

We investigated whether the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) affects the cerebrovascular changes occurring in seizures induced by kainic acid (KA) in awake, spontaneously breathing rats. Blood flow and tissue PO2 and PCO2 were continuously and simultaneously measured by mass spectrometry from a cannula chronically implanted into the dorsal hippocampus, L-NAME (20 mg/kg; n = 8) or saline (n = 9) was administered i.p. 30 min prior to i.p. KA (10 mg/kg) injection. L-NAME significantly decreased hippocampal blood flow and PO2 and increased mean arterial blood pressure (MABP). In L-NAME-treated rats, seizure activity occurred about 10 min sooner than in control rats, and status epilepticus was inevitably followed by a flat electroencephalogram and sudden death. In contrast, control rats survival KA-induced seizures. Hippocampal blood flow was significantly less elevated during the seizures in L-NAME-treated rats than in control rats (maximal levels, 170 and 450%, respectively, of baseline values), though MABP remained significantly higher. Hippocampal PO2 was significantly decreased at all times after KA injection in L-NAME-treated rats, whereas it remained at or above normoxic levels in control rats. The present results show that L-NAME markedly attenuates the hippocampal blood flow and tissue PO2 changes in response to enhanced metabolic activity due to limbic seizures and suggest that NO is of major importance in cerebral blood flow control during KA-induced seizures.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources