Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb 1;474(3):497-507.
doi: 10.1113/jphysiol.1994.sp020040.

Chemical activation of caudal medullary expiratory neurones alters the pattern of breathing in the cat

Affiliations

Chemical activation of caudal medullary expiratory neurones alters the pattern of breathing in the cat

F Bongianni et al. J Physiol. .

Abstract

1. The purpose of this work was to ascertain whether the activation of caudal expiratory neurones located in the caudal part of the ventral respiratory group (VRG) may affect the pattern of breathing via medullary axon collaterals. 2. We used microinjections of DL-homocysteic acid (DLH) to activate this population of neurones in pentobarbitone-anaesthetized, vagotomized, paralysed and artificially ventilated cats. Both phrenic and abdominal nerve activities were monitored; extracellular recordings from medullary and upper cervical cord respiratory neurones were performed. 3. DLH (160 mM) microinjected (10-30 nl for a total of 1.6-4.8 nmol) into the caudal VRG, into sites where expiratory activity was encountered, provoked an intense and sustained activation of the expiratory motor output associated with a corresponding period of silence in phrenic nerve activity. During the progressive decline of the activation of abdominal motoneurones, rhythmic inspiratory activity resumed, displaying a decrease in frequency and a marked reduction or the complete suppression of postinspiratory activity as its most consistent features. 4. Medullary and upper cervical cord inspiratory neurones exhibited inhibitory responses consistent with those observed in phrenic nerve activity, while expiratory neurones in the caudal VRG on the side contralateral to the injection showed excitation patterns similar to those of abdominal motoneurones. On the other hand, in correspondence to expiratory motor output activation, expiratory neurones of the Bötzinger complex displayed tonic discharges whose intensity was markedly lower than the peak level of control breaths. 5. Bilateral lignocaine blockades of neural transmission at C2-C3 affecting the expiratory and, to a varying extent, the inspiratory bulbospinal pathways as well as spinal cord transections at C2-C3 or C1-C2, did not suppress the inhibitory effect on inspiratory neurones of either the ipsi- or contralateral VRG in response to DLH microinjections into the caudal VRG. 6. The results show that neurones within the column of caudal VRG expiratory neurones promote inhibitory effects on phrenic nerve activity and resetting of the respiratory rhythm. We suggest that these effects are mediated by medullary bulbospinal expiratory neurones, which may, therefore, have a function in the control of breathing through medullary axon collaterals.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1991 Jun;437:1-25 - PubMed
    1. Brain Res. 1990 Nov 12;533(1):141-6 - PubMed
    1. Pflugers Arch. 1977 Nov 25;372(1):7-16 - PubMed
    1. J Physiol. 1979 Nov;296:291-314 - PubMed
    1. Brain Res. 1980 Nov 24;202(1):51-63 - PubMed

Publication types

LinkOut - more resources