Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Jul;139(1):24-33.

Synergistic interactions between RAD5, RAD16 and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

Affiliations
  • PMID: 8016304
Comparative Study

Synergistic interactions between RAD5, RAD16 and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

B J Glassner et al. Radiat Res. 1994 Jul.

Abstract

Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae. These genes are members of the RAD6, RAD3 and RAD50 epistasis groups, respectively, which correspond to the three major DNA repair pathways in yeast. These proteins also share homology with other eucaryotic proteins, including those encoded by SNF2 and MOT1 of yeast, brahma and lodestar of Drosophila and the human ERCC6 gene. The homology shares features with known helicases, suggesting a newly identified helicase subfamily. We have constructed a series of congenic single-, double- and triple-deletion mutants involving RAD5, RAD16 and RAD54 to examine the interactions between these genes. Each deletion mutation alone has only a moderate effect on survival after exposure to UV radiation. Each pairwise-double mutant exhibits marked synergism. The triple-deletion mutant displays further synergism. These results confirm the assignment of the RAD54 gene to the RAD50 epistasis group and suggest that the RAD16 gene play a larger role in DNA repair after exposure to UV radiation than has been suggested previously. Additionally, the proteins encoded by RAD5, RAD16 and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources