Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan;24(1):131-8.
doi: 10.1002/eji.1830240120.

Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants

Affiliations

Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants

J K Ma et al. Eur J Immunol. 1994 Jan.

Abstract

The genes encoding the heavy and light chains of a murine monoclonal antibody (mAb Guy's 13) have been cloned and expressed in Nicotiana tabacum. Transgenic plants have been regenerated that secrete full-length Guy's 13 antibody. By manipulation of the heavy chain gene sequence, constant region domains from an immunoglobulin alpha heavy chain have been introduced, and plants secreting Guy's 13 mAb with chimeric gamma/alpha heavy chains have also been produced. For each plant antibody, light and heavy chains have been detected by Western blot analysis and the fidelity of assembly confirmed by demonstrating that the antibody is fully functional, by antigen binding studies. Furthermore, the plant antibodies retained the ability to aggregate streptococci, which confirms that the bivalent antigen-binding capacity of the full length antibodies is intact. The results demonstrate that IgA as well as IgG class antibodies can be assembled correctly in tobacco plants and suggest that transgenic plants may be suitable for high-level expression of more complex genetically engineered immunoglobulin molecules. Since mAb Guy's 13 prevents streptococcal colonization in humans, transgenic plant technology may have therapeutic applications.

PubMed Disclaimer

MeSH terms

LinkOut - more resources