Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993 Aug;26(3):225-331.
doi: 10.1017/s0033583500002869.

Multi-stage proofreading in DNA replication

Affiliations
Review

Multi-stage proofreading in DNA replication

R A Beckman et al. Q Rev Biophys. 1993 Aug.

Abstract

The mechanisms by which DNA polymerases achieve their remarkable fidelity, including base selection and proofreading, are briefly reviewed. Nine proofreading models from the current literature are evaluated in the light of steady-state and transient kinetic studies of E. coli DNA polymerase I, the best-studied DNA polymerase. One model is demonstrated to predict quantitatively the response of DNA polymerase I to three mutagenic probes of proofreading: exogenous pyrophosphate, deoxynucleoside monophosphates, and the next correct deoxynucleoside triphosphate substrate, as well as the response to combinations of these probes. The theoretical analysis allows elimination of many possible proofreading mechanisms based on the kinetic data. A structural hypothesis links the kinetic analysis with crystallographic, NMR and genetic studies. It would appear that DNA polymerase I proofreads each potential error twice, at the same time undergoing two conformational changes within a catalytic cycle. Multi-stage proofreading is more efficient, and may be utilized in other biological systems as well. In fact, recent evidence suggests that fidelity of transfer RNA charging may be ensured by a similar mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types