Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr;26(2):189-201.
doi: 10.1016/0040-8166(94)90094-9.

Surface membrane remodeling following removal of vasopressin in toad urinary bladder

Affiliations

Surface membrane remodeling following removal of vasopressin in toad urinary bladder

A J Mia et al. Tissue Cell. 1994 Apr.

Abstract

Vasopressin (ADH) increases transepithelial water flow in renal epithelia by a process that involves the insertion of water channels into the apical membrane. The objective of the present study was to examine membrane surface remodeling under conditions that promote the recovery of water channels. Hemibladders were set up as sacs with an imposed osmotic gradient. The control sacs received no hormone treatment, whereas the other sacs were stimulated with 100 mU/ml ADH for 10 or 15 min to induce exocytosis and enhanced water flow. ADH was then washed from the tissues with fresh buffer rinses to abolish the hormone actions. These tissues were then allowed to recover for 15, 30 and 60 min. During this time water channels are recovered intracellularly by a process of endocytosis. This time period was called the retrieval period. At specified time intervals, tissues were fixed and processed for SEM or embedded in epon for ultrathin sectioning for TEM studies. Control tissues, regardless of the length of time, showed little or no sign of surface remodeling that was indicative of endocytosis during pre- or post-buffer washes, whereas the ADH-treated tissues showed a time-dependent remodeling of the apical membrane during activation and following removal of the hormone during the retrieval period. At the 10 min retrieval period, greater than 47% of the granular cells showed extensive surface remodeling. By 30 and 60 min posthormone treatment during recovery, fewer than 23% of granular cells showed signs of surface membrane changes. During retrieval the apical membrane undergoes a transition with a loss of both microridges and microvilli prior to membrane restoration. These observations suggest that apical membrane remodeling is crucial for the restoration of membrane permeability following hormone activation and termination.

PubMed Disclaimer

Publication types

LinkOut - more resources