Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jun;266(6 Pt 2):H2359-68.
doi: 10.1152/ajpheart.1994.266.6.H2359.

Coronary pressure-flow autoregulation protects myocardium from pressure-induced changes in oxygen consumption

Affiliations

Coronary pressure-flow autoregulation protects myocardium from pressure-induced changes in oxygen consumption

X J Bai et al. Am J Physiol. 1994 Jun.

Abstract

Pressure-flow autoregulation minimizes changes in coronary blood flow (CBF) when coronary perfusion pressure (CPP) is altered. This investigation determined if autoregulation also minimizes CPP-induced changes in coronary vascular volume (CVV) and CVV-dependent changes in myocardial oxygen consumption (MVO2). In 11 anesthetized dogs, the left anterior descending coronary artery was cannulated, and responses to 20-mmHg changes in CPP were examined over a range of CPP from 60 to 180 mmHg. Changes in CPP had no significant effect on systemic hemodynamics or on left ventricular end-diastolic segment length, end-systolic segment length, or percent segment shortening. In hearts with effective pressure-flow autoregulation [closed-loop gain (GC) > 0.4], CVV increased 0.06%/mmHg change in CPP. For the same hearts, MVO2 increased 0.04%/mmHg change in CPP. In hearts with ineffective autoregulation (GC < 0.4), CVV increased 0.97%/mmHg (P < 0.001 vs. autoregulating hearts), and MVO2 increased 0.41%/mmHg (P < 0.001 vs. autoregulating hearts). MVO2 and CVV were correlated (r = 0.69, P < 0.0001) independently of autoregulatory capability, but only when autoregulation was poor and capacitance was elevated did CPP significantly affect MVO2. We conclude that pressure-flow autoregulation protects myocardium from CPP-induced changes in CVV, which in turn produces changes in oxygen consumption.

PubMed Disclaimer

Publication types

LinkOut - more resources