Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May;104(1):1-10.
doi: 10.1006/jmrb.1994.1048.

WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy

Affiliations

WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy

R J Ogg et al. J Magn Reson B. 1994 May.

Abstract

Suppression of the water signal during 1H magnetic resonance spectroscopy by repeated sequences of a frequency-selective radiofrequency pulse and a gradient dephasing pulse requires nulling of the longitudinal component of the water magnetization and is therefore affected by T1 relaxation, RF-pulse flip angles (which depend on B1), and sequence timing. In in vivo applications, T1 and B1 inhomogeneity within the sample may cause spatially inhomogeneous water suppression. An improved water-suppression technique called WET (water suppression enhanced through T1 effects), developed from a Bloch equation analysis of the longitudinal magnetization over the T1 and B1 ranges of interest, achieves T1- and B1-insensitive suppression with four RF pulses, each having a numerically optimized flip angle. Once flip angles have been optimized for a given sequence, time-consuming flip-angle adjustments during clinical examinations are eliminated. This water-suppression technique was characterized with respect to T1 variations, B1 variations, off-resonance effects, and partial saturation effects and was compared to similar techniques. Effective water suppression has been achieved with this new technique in single-voxel spectroscopy examinations of more than 50 brain tumor patients at 1.5 T.

PubMed Disclaimer

Publication types

LinkOut - more resources