Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May;28(5):629-35.
doi: 10.1093/cvr/28.5.629.

Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing

Affiliations

Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing

M B Buchalter et al. Cardiovasc Res. 1994 May.

Abstract

Objective: The aim was to investigate the generation of rotation of the left ventricular apex with respect to the base by magnetic resonance tagging, a non-invasive method of labelling the myocardium, in a canine model.

Methods: 18 dogs were imaged at baseline and during: (1) inotropic stimulation with dobutamine; (2) chronotropic stimulation with atrial pacing; (3) anterior wall ischaemia; (4) posterior wall ischaemia; and (5) varying left ventricular activation site; six dogs underwent each intervention. Apical rotation of the apex (torsion) was quantified. The epicardium and the endocardium were considered separately, as were the anterior and posterior walls.

Results: Mean torsion of the epicardium [anterior 3.1(SEM 1.2) degrees, posterior 9.9(1.0) degrees] was less than that of the endocardium [anterior 8.1(2.6) degrees, posterior 14.9(2.0) degrees, p < 0.05 for both]. Anterior torsion was less than posterior torsion for both the epicardium, p < 0.05, and the endocardium, p < 0.05. Dobutamine increased torsion of both the epicardium [anterior 13.3(2.2) degrees, posterior 12.6(1.7) degrees, p < 0.05 for both] and the endocardium [anterior 24.6(2.3) degrees, posterior 16.5(2.1) degrees, p < 0.05 for both]. Atrial pacing at 160% baseline rate increased torsion of both the anterior wall [epicardium 6.6(1.0) degrees, endocardium 11.3(1.2) degrees, p < 0.05] and the posterior wall [epicardium 13.0(1.3) degrees, endocardium 19.4(1.9) degrees, p < 0.05]. Anterior wall ischaemia reduced torsion of the anterior wall only [epicardium -2.0(1.0) degrees, endocardium 6.7(2.3) degrees, both p < 0.05]. Posterior wall ischaemia reduced torsion of the posterior wall of the epicardium only [7.1(1.2) degrees, p < 0.05] but also reduced torsion of the anterior wall [epicardium 0.7(1.0) degrees, endocardium 2.4(1.6) degrees, p < 0.05 for both]. Altering the pattern of left ventricular activation by atrioventricular pacing reduced torsion of the posterior wall of the epicardium [6.6(1.2) degrees, p < 0.05] and of the anterior [3.6(1.9) degrees, p < 0.05] and posterior [7.1(1.6) degrees, p < 0.05] walls of the endocardium.

Conclusions: Rotational deformation of the left ventricle is dependent on the pattern of left ventricular activation and the contractile state. That a decrease in the contractile state in one area (by ischaemia) can cause a decrease in rotation in another suggests that this rotation depends on the complex fiber arrangement of the whole ventricle.

PubMed Disclaimer

Publication types

LinkOut - more resources