Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Jul 15;269(28):18638-45.

Divergent roles of RAS1 and RAS2 in yeast longevity

Affiliations
  • PMID: 8034612
Free article
Comparative Study

Divergent roles of RAS1 and RAS2 in yeast longevity

J Sun et al. J Biol Chem. .
Free article

Abstract

Individual cells of the yeast Saccharomyces cerevisiae have a limited replicative life-span. The role of the genes RAS1 and RAS2 in yeast longevity was examined. Over-expression of RAS2 led to a 30% increase in the life-span on average and postponed the senescence-related increase in generation time seen during yeast aging. No life-span extension was obtained by overexpression of RAS1. However, deletion of RAS1 prolonged the life-span. These results suggest that RAS1 and RAS2 play reciprocal roles in determining yeast longevity. RAS1 and RAS2 mRNA and protein levels declined with replicative age, suggesting a diminishing impact on yeast longevity. The major known pathway through which Ras proteins function in yeast involves stimulation of adenylate cyclase. No evidence for a life-span-extending effect of elevated intracellular cAMP was found. Indeed, high intracellular cAMP was associated with curtailed life-span. A similar decrease in life-span was found on disruption of BCY1, which codes for the regulatory subunit of protein kinase A, the downstream target of cAMP. Importantly, overexpression of an effector domain mutant of RAS2, defective in stimulation of adenylate cyclase, prolonged life-span to the same extent as the wild-type gene, suggesting that the cAMP pathway is neither sufficient nor necessary for increased longevity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources