Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Aug;68(8):4980-7.
doi: 10.1128/JVI.68.8.4980-4987.1994.

Inhibition of vesicular stomatitis virus RNA synthesis by protein hyperphosphorylation

Affiliations

Inhibition of vesicular stomatitis virus RNA synthesis by protein hyperphosphorylation

T L Chang et al. J Virol. 1994 Aug.

Abstract

Vesicular stomatitis virus (VSV) RNA synthesis requires the template nucleocapsid, the polymerase (L) protein, and the cofactor phosphorylated (P/NS) protein. To determine whether the degree of phosphorylation regulated VSV RNA synthesis, infected Chinese hamster ovary cells were treated with okadaic acid (OKA), a serine/threonine phosphatase inhibitor. OKA reduced viral penetration and uncoating but had little or no effect on primary transcription or viral protein synthesis. However, approximately 80% of total viral RNA synthesis was inhibited when 2 microM or more OKA was added to infected cells after viral uncoating had taken place. Analysis of proteins and RNA species in infected cells labeled with 32P showed that OKA led to hyperphosphorylation of two viral phosphoproteins, the P/NS protein and matrix protein (M), resulting in inhibition of full-length RNA synthesis and subsequent secondary transcription. Pulse-chase experiments demonstrated that the hyperphosphorylated P/NS species was converted rapidly from the less phosphorylated form. Hyperphosphorylated P/NS as well as the less phosphorylated form, but not M, were found to be associated with nucleocapsids isolated from cytoplasmic extracts. These results suggest that phosphorylation played an important role in the regulation between viral transcription and viral RNA replication as well as the turning off of RNA replication. Thus, phosphatase inhibitors promise to be a valuable tool for dissecting the regulatory mechanisms involving phosphorylated viral proteins.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Cell Sci. 1991 Dec;100 ( Pt 4):753-9 - PubMed
    1. Virology. 1992 Jun;188(2):417-28 - PubMed
    1. J Virol. 1969 Aug;4(2):154-61 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Virology. 1970 Dec;42(4):946-57 - PubMed

Publication types

MeSH terms

LinkOut - more resources