Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Aug;68(8):5232-8.
doi: 10.1128/JVI.68.8.5232-5238.1994.

Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis

Affiliations

Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis

Y Chen et al. J Virol. 1994 Aug.

Abstract

The genome of all hepadnaviruses has an open reading frame called the P gene, which encodes a polypeptide of 90 to 97 kDa. The product or products of this P gene are involved in multiple functions of the viral life cycle. These functions include a priming activity which initiates minus-strand DNA synthesis, a polymerase activity which synthesizes DNA by using either RNA or DNA templates (reverse transcriptase), a nuclease activity which degrades the RNA strand of RNA-DNA hybrids (RNase H), and involvement in packaging the RNA pregenome into nucleocapsids. In a previous study, we found that a single point mutation at position 711 in the duck hepatitis B virus (DHBV) P gene product RNase H domain prevented viral RNA packaging. In the present experiments, we have mutated additional conserved amino acids in the DHBV RNase H domain and examined the ability of viral genomes containing these mutations to package RNA and replicate viral DNA. Charged and sulfur group amino acids adjacent to Cys-711 were mutated. None of these mutants was defective in either RNA packaging or viral replication. We also tested a number of mutations on the basis of common elements in the crystal structures of Escherichia coli and human immunodeficiency virus reverse transcriptase RNase H enzymes and on the basis of the similarities of their amino acid sequences to those of the RNase H domains of DHBV and HBV. Our results revealed that the entire beta 4 strand and amino acids Leu-712, Leu-697, and Val-719 in the putative hydrophobic cores of the beta 4, alpha A, and alpha B regions, respectively, are involved in pregenomic RNA encapsidation. This suggests that the basic structure of the RNase H domain in the DHBV P gene product is required for viral RNA packaging. We used the in vitro DHBV minus-strand DNA priming system developed by Wang and Seeger (G.-H. Wang and C. Seeger, Cell 71:663-670, 1992) to test the effect of RNase H packaging mutations on P gene product enzymatic activity. While all packaging-defective mutants tested maintained DNA priming activity, levels were decreased 5- to 20-fold compared with that of the wild-type genome. This observation suggests that the hepadnavirus RNase H domain plays a role in optimizing priming of minus-strand DNA synthesis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Cell. 1992 Nov 13;71(4):663-70 - PubMed
    1. EMBO J. 1992 Sep;11(9):3413-20 - PubMed
    1. Antiviral Res. 1993 Mar;20(3):235-47 - PubMed
    1. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4107-11 - PubMed
    1. J Virol. 1993 Nov;67(11):6507-12 - PubMed

Publication types

LinkOut - more resources