Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Jun;12(2):99-106.
doi: 10.1002/cbf.290120204.

Regulation of intracellular creatine in erythrocytes and myoblasts: influence of uraemia and inhibition of Na,K-ATPase

Affiliations
Comparative Study

Regulation of intracellular creatine in erythrocytes and myoblasts: influence of uraemia and inhibition of Na,K-ATPase

S E Bennett et al. Cell Biochem Funct. 1994 Jun.

Abstract

The regulation of intracellular creatine concentration in mammalian cells is poorly understood, but is thought to depend upon active sodium-linked uptake of creatine from extracellular fluid. In normal human erythrocytes, creatine influx into washed cells was inhibited by 40 per cent in the absence of extracellular sodium. In washed cells from uraemic patients, sodium-independent creatine influx was normal, whereas the sodium-dependent component of creatine influx was 3.3 times higher than normal, possibly reflecting the reduced mean age of uraemic erythrocytes. In spite of this, the intracellular creatine concentration was no higher than normal in uraemic erythrocytes, implying that some factor in uraemic plasma in vivo inhibits sodium-dependent creatine influx. Both in normal and uraemic erythrocytes, the creatine concentration was 10 times that in plasma, and the concentration in the cells showed no detectable dependence on that in plasma, suggesting that the intracellular creatine concentration is controlled by an active saturable process. Active sodium-dependent accumulation of creatine was also demonstrated in L6 rat myoblasts and was inhibited when transport was measured in the presence of 10(-4) M ouabain or digoxin, implying that uptake was driven by the transmembrane sodium gradient. However, when creatine influx was measured immediately after ouabain or digoxin had been washed away, it was higher than in control cells, suggesting that Na,K-ATPase and/or sodium-linked creatine transport are up-regulated when treated with inhibitors of Na,K-ATPase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources