Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Apr;35(4 Pt 1):431-5.

Developmental changes of phosphorus metabolite concentrations in the human brain: a 31P magnetic resonance spectroscopy study in vivo

Affiliations
  • PMID: 8047379
Comparative Study

Developmental changes of phosphorus metabolite concentrations in the human brain: a 31P magnetic resonance spectroscopy study in vivo

R Buchli et al. Pediatr Res. 1994 Apr.

Abstract

Phosphorus magnetic resonance spectroscopy is a noninvasive method to investigate brain metabolism in vivo. ATP generally serves as an internal concentration standard for the quantification of the various phosphorus metabolites, because the ATP concentration in mammalian brains is assumed to be age independent. This presumption is based on observations made in the biochemical analysis of the developing rat brain. In the present study, metabolite concentrations were assessed with an external concentration standard. Each brain spectrum was quantified using a calibration spectrum that was acquired from a phantom after the in vivo brain measurement. Fully relaxed localized brain spectra were obtained from 16 neonates (2-28 d), 17 infants (6-20 mo), and 28 adults (22-58 y). The metabolite concentrations (in mmol/L) changed from neonates to adults: phosphomonoester from 4.5 to 3.5, inorganic phosphate from 0.6 to 1.0, phosphodiester from 3.2 to 11.7, phosphocreatine from 1.4 to 3.4, and ATP from 1.6 to 2.9. We conclude that 1) the ATP concentration in the human brain almost doubles between neonates and adults, and 2) ATP may not be used as an age-independent internal concentration standard.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources