Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jul;127(1):76-82.
doi: 10.1006/taap.1994.1141.

EDU pretreatment decreases polymorphonuclear leukocyte migration into rat lung airways

Affiliations
Free article

EDU pretreatment decreases polymorphonuclear leukocyte migration into rat lung airways

D J Bassett et al. Toxicol Appl Pharmacol. 1994 Jul.
Free article

Abstract

Pretreatment with the heterocyclic compound EDU (N-[2-(2-oxo-1-imidazolindinyl)ethyl]-N'-phenylurea) has previously been shown to reduce polymorphonuclear leukocyte (PMN) infiltration into the airways of ozone-exposed rats. The present study further examined the effects of 1 and 2 days EDU pretreatment on rat lung inflammatory responses by determining PMN infiltration in response to intratracheal instillation with the chemoattractant formyl-norleucine-leucine-phenylalanine (fNLP). Maximal recovery of PMNs by bronchoalveolar lavage was observed 4 hr after fNLP instillation with no alteration in the numbers of recoverable macrophages and lymphocytes. Although 1-day pretreatment with EDU did not affect PMN recovery from fNLP-instilled rat lungs, 2 days of EDU pretreatment prevented PMN infiltration as indicated by PMN recoveries that were similar to those obtained from saline-instilled lungs. Measurements of lung-marginated and interstitial pools of inflammatory cells using collagenase tissue digestion demonstrated no effect of 2 days EDU pretreatment. Although 2 days EDU pretreatment alone did not alter blood PMN content, lung permeability, and the lavage recoveries of inflammatory cells, blood PMN responses to chemotactic stimuli in vitro were impaired. In addition, EDU was shown to directly inhibit PMN chemotaxis and superoxide anion generation in vitro. These data demonstrated that EDU acts by interfering with PMN activation and migration rather than by decreasing PMN availability. EDU, by modulating the inflammatory response, represents a useful compound for preventing PMN-associated amplification of acute lung injuries.

PubMed Disclaimer

Publication types

LinkOut - more resources