Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jul;267(1 Pt 1):E57-62.
doi: 10.1152/ajpendo.1994.267.1.E57.

Melatonin prevents the suppression of cardiac Ca(2+)-stimulated ATPase activity induced by alloxan

Affiliations

Melatonin prevents the suppression of cardiac Ca(2+)-stimulated ATPase activity induced by alloxan

L D Chen et al. Am J Physiol. 1994 Jul.

Abstract

The effects of melatonin treatment on cardiac sarcolemmal membrane function were investigated in alloxan-injected rats. Ca(2+)-stimulated adenosine-triphosphatase (ATPase, Ca2+ pump) and Mg(2+)-ATPase activities were depressed significantly in sarcolemmal preparations from alloxan-injected rats compared with levels in control rats. These deficits were observed 2 days after alloxan injection, and they were accompanied by an increase in the density of voltage-sensitive calcium channels, as measured by the [3H]nitrendipine-binding assay. In a dose-dependent manner, treatment of rats with melatonin before alloxan injection significantly overcame the suppression of Ca(2+)-stimulated ATPase in cardiac sarcolemma. Melatonin (1, 5, and 10 mg/kg) overcame Ca(2+)-stimulated ATPase suppression by 13, 35, and 70%, respectively. In addition, melatonin at a dose of 10 mg/kg also prevented the suppression of the Mg(2+)-ATPase by 31%. The number of [3H]nitrendipine-binding sites was not influenced by melatonin. The patent Na(+)-K(+)-ATPase and ouabain-sensitive Na(+)-K(+)-ATPase activities were not different between the control and experimental groups. The results indicate that Ca2+ pump activity is suppressed by acute alloxan treatment, whereas the density of voltage-sensitive calcium channels is increased. These changes may be a consequence of alloxan toxicity to the cardiac sarcolemma. Melatonin, likely because of its antioxidant capacity, exerts a protective effect on heart sarcolemmal membrane function in alloxan-injected rats.

PubMed Disclaimer

Publication types

LinkOut - more resources