Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 May 15;387(2):379-87.
doi: 10.1016/0005-2728(75)90117-6.

Flash kinetics and light intensity dependence of oxygen evolution in the blue-green alga Anacystis nidulans

Free article

Flash kinetics and light intensity dependence of oxygen evolution in the blue-green alga Anacystis nidulans

A C Ley et al. Biochim Biophys Acta. .
Free article

Abstract

Patterns of oxygen evolution in flashing light for the glue-green alga Anacystis nidulans are compared with those for broken spinach chloroplasts and whole cells of the green alga Chlorella pyrenoidosa. The oscillations of oxygen yield with flash number that occur in both Anacystis and Chlorella, display a greater degree of damping than do those of isolated spinach chloroplasts. The increase in damping results from a two- to threefold increase in the fraction (alpha) of reaction centers "missed" by a flash. The increase in alpha cannot be explained by non-saturing flash intensities or by the dark reduction of the oxidized intermediates formed by the flash. Anaerobic conditions markedly increase alpha in Anacystis and Chlorella but have no effect on alpha in broken spinach chloroplasts. The results signify that the mechanism of charge separation and water oxidation involved in all three orgainsms is the same, but that the pool of secondary electron acceptors between Photosystem II and Photosystem I is more reduced in the dark, in the algal cells, than in the isolated spinach chloroplasts. Oxygen evolution in flashing light for Anacystis and Chlorella show light saturation curves for the oxygen yield of the third flash (Y3) that differ markedly from those of the steady-state flashes(YS). In experiments in which all flashes are uniformly attenuated, Y3 requires nearly twice as much light as YS to reach half-saturation. Under these conditions Y3 has a sigmoidal dependence on intensity, while that of YS is hyperbolic. These differences depend on the number of flashes attenuated. When any one of the first three flashes is attenuated, the variation of Y3 with intensity resembles that of YS. When two of the first three flashes are attenuated, Y3 is intermediate in shape between the two extremes. A quantitative interpretation of these results based on the model of Kok et al. (Kik, B., Forbush, B.and McGloin, M. (1970) Photochem. Photobiol. 14, 307-321) fits the experimental data.

PubMed Disclaimer

Similar articles

Cited by

Publication types