Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Aug;36(2):166-75.
doi: 10.1002/ana.410360208.

Patterns of cerebral glucose metabolism detected with positron emission tomography differ in multiple system atrophy and olivopontocerebellar atrophy

Affiliations
Free article

Patterns of cerebral glucose metabolism detected with positron emission tomography differ in multiple system atrophy and olivopontocerebellar atrophy

S Gilman et al. Ann Neurol. 1994 Aug.
Free article

Abstract

We used positron emission tomography with [18F]fluorodeoxyglucose to study local cerebral metabolic rates for glucose (ICMRglc) in patients with multiple system atrophy (MSA), sporadic olivopontocerebellar atrophy (sOPCA), and dominantly inherited olivopontocerebellar atrophy (dOPCA) in comparison with normal control subjects. IN MSA, absolute lCMRglc was significantly decreased in the brainstem, cerebellum, putamen, thalamus, and cerebral cortex. In sOPCA, absolute lCMRglc was significantly decreased in the brainstem, cerebellum, putamen, thalamus, and cerebral cortex. In dOPCA, absolute lCMRglc was significantly decreased in the brainstem and cerebellum but not in the other structures. Examination of lCMRglc normalized to the cerebral cortex in comparison with normal controls revealed in MSA significant decreases in the brainstem, cerebellum, and putamen but, in both sOPCA and dOPCA, significant decreases only in the brainstem and cerebellum. The findings indicate that these three disorders all show a marked decrease of lCMRglc in the brainstem and cerebellum but differ in the degree of hypometabolism in forebrain and cerebral cortical structures. The results are consistent with the possibility that, in many cases, sOPCA will evolve into MSA. Moreover, positron emission tomography may provide helpful diagnostic information in these neurodegenerative diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms