Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Aug;267(2 Pt 2):F271-80.
doi: 10.1152/ajprenal.1994.267.2.F271.

Regulation of mitogenesis, motogenesis, and tubulogenesis by hepatocyte growth factor in renal collecting duct cells

Affiliations

Regulation of mitogenesis, motogenesis, and tubulogenesis by hepatocyte growth factor in renal collecting duct cells

L G Cantley et al. Am J Physiol. 1994 Aug.

Abstract

Hepatocyte growth factor (HGF) has been implicated in branching tubulogenesis of the developing kidney and in response to renal injury. We therefore examined the effects of response to renal injury. We therefore examined the effects of HGF on a recently described murine inner medullary collecting duct epithelial cell line (mIMCD-3 cells) in comparison with Madin-Darby canine kidney (MDCK) cells. HGF induced mitosis, scattering, and tubulogenesis in both mIMCD-3 cells and MDCK cells. However, mIMCD-3 cells underwent branching tubulogenesis under matrix conditions that did not support these morphogenetic changes in MDCK cells, suggesting substantial differences in regulation of tubulogenesis in these two cell types. In quiescent mIMCD-3 cells, the high-affinity receptor for HGF, c-met, was expressed in a nonphosphorylated state. After stimulation with HGF, there was a > 10-fold increase in receptor tyrosine phosphorylation and selective association with at least two intracellular proteins, including the phosphatidylinositol-3-kinase. Thus mIMCD-3 cells, which undergo HGF-dependent mitosis, scattering, and branching tubulogenesis, express the c-met receptor in a highly regulated state and therefore should make an excellent model for examining the mechanisms of HGF-dependent tubulogenesis in the renal collecting duct.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources