Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Apr;15(4):268-74.
doi: 10.1097/00006231-199404000-00157.

Carrier-free 131I-meta-iodobenzylguanidine: comparison of production from meta-diazobenzylguanidine and from meta-trimethylsilylbenzylguanidine

Affiliations
Comparative Study

Carrier-free 131I-meta-iodobenzylguanidine: comparison of production from meta-diazobenzylguanidine and from meta-trimethylsilylbenzylguanidine

R J Mairs et al. Nucl Med Commun. 1994 Apr.

Abstract

Meta-iodobenzylguanidine (MIBG) is a drug which is selectively accumulated by the uptake-1 process in adrenergic tissues. When labelled with 131I, it may be used for the targetted radiotherapy of tumours such as phaeochromocytoma and neuroblastoma. This paper describes the preparation of carrier-free 131I-MIBG by radioiodination of meta-diazobenzylguanidine, and compares this process with one involving iododesilylation of meta-trimethylsilylbenzylguanidine. Both processes result in the formation of carrier-free 131I-MIBG whose specific activity at greater than 3 x 10(16) Bq mol-1 is at least 100 times higher than that of commercially available 131I-MIBG for therapeutic use. The therapeutic use of 131I-MIBG with a higher than usual specific activity is predicted to result in a greater target-to-nontarget ratio, and therefore enhanced efficacy because of an increased therapeutic index. As the radiochemical yield of the process involving the metadiazobenzylguanidine intermediate is only 13%, compared with 98% for the iododesilylation reaction, the latter is the preferred synthetic route.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources