Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jun;66(6):2166-72.
doi: 10.1016/S0006-3495(94)81012-4.

Passive mechanical behavior of human neutrophils: effect of cytochalasin B

Affiliations

Passive mechanical behavior of human neutrophils: effect of cytochalasin B

M A Tsai et al. Biophys J. 1994 Jun.

Abstract

Actin is a ubiquitous protein in eukaryotic cells. It plays a major role in cell motility and in the maintenance and control of cell shape. In this article, we intend to address the contribution of actin to the passive mechanical properties of human neutrophils. As a framework for assessing this contribution, the neutrophil is modeled as a simple viscous fluid drop with a constant cortical ("surface") tension. The reagent cytochalasin B (CTB) was used to disrupt the F-actin structure, and the neutrophil cortical tension and cytoplasmic viscosity were evaluated by single-cell micropipette aspiration. The cortical tension was calculated by simple force balance, and the viscosity was calculated according to a numerical analysis of the cell entry into the micropipette. CTB reduced the cell cortical tension in a dose-dependent fashion: by 19% at a concentration of 3 microM and by 49% at 30 microM. CTB also reduced the cytoplasmic viscosity by approximately -25% at a concentration of 3 microM and by approximately 65% at a concentration of 30 microM when compared at the same aspiration pressures. All three groups of neutrophils, normal cells, and cells treated with either 3 or 30 microM CTB, exhibited non-Newtonian behavior, in that the apparent viscosity decreased with increasing shear rate. The dependence of the cytoplasmic viscosity on deformation rate can be described empirically by mu = mu c(gamma m/gamma c)-b, where mu is cytoplasmic viscosity, gamma m is mean shear rate, mu c is the characteristic viscosity at the characteristic shear rate gamma c, and b is a material coefficient. The shear rate dependence of the cytoplasmic viscosity was reduced by CTB treatment. This is reflected by the changes in the material coefficients. When gamma c was set to 1 s-1, pc = 130 +/- 23 Pa.s and b = 0.52 +/- 0.09 for normal neutrophils and pc = 54 +/- 15 Pa.S and b = 0.26 +/- 0.05 for cells treated with 30 micro M CTB. These results provide the first quantitative assessment of the role that Pa-s-actin structure plays in the passive mechanical properties of human neutrophils.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biophys J. 1984 Sep;46(3):383-6 - PubMed
    1. Exp Cell Res. 1984 Jul;153(1):173-85 - PubMed
    1. Biochem Soc Trans. 1984 Dec;12(6):983-7 - PubMed
    1. Subcell Biochem. 1985;11:1-49 - PubMed
    1. J Muscle Res Cell Motil. 1986 Oct;7(5):405-12 - PubMed

Publication types