Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Mar;28(3):353-63.
doi: 10.1002/jbm.820280310.

Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen

Affiliations
Free article
Comparative Study

Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen

P B van Wachem et al. J Biomed Mater Res. 1994 Mar.
Free article

Abstract

The biocompatibility and tissue regenerating capacity of four crosslinked dermal sheep collagens (DSC) was studied. In vitro, the four DSC versions were found to be noncytotoxic or very low in cytotoxicity. After subcutaneous implantation in rats, hexamethylenediisocyanate-crosslinked DSC (HDSC) seldom induced an increased infiltration of neutrophils or macrophages, as compared with normal wound healing; whereas new formation of collagen was observed. DSC crosslinked with glutaraldehyde (GDSC) followed by reaction with NaBH4 shortly after implantation showed an increased infiltration of neutrophils with a deviant morphology. Furthermore, a high incidence of calcification was observed, which may explain the minor ingrowth of giant cells and fibroblasts, and the poor formation of new rat collagen. Acyl azide-crosslinked DSC (AaDSC) first induced an increased infiltration of macrophages, and then of giant cells, both with high lipid formation. AaDSC degraded at least twice as slowly as HDSC and GDSC, finally leaving a matrix of newly formed rat collagen. Samples crosslinked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (ENDSC) induced the same mild cellular reaction as HDSC; whereas, similar to AaDSC, the degradation rate was slow and an optimal rat collagen matrix was formed. Of the crosslinked DSC samples, ENDSC seems most promising for tissue regeneration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources