Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Mar;28(3):387-95.
doi: 10.1002/jbm.820280314.

In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy

Affiliations
Comparative Study

In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy

M P Wu et al. J Biomed Mater Res. 1994 Mar.

Abstract

Intracranial studies to analyze the degradation kinetics of the bioerodible polymer poly[bis(p-carboxyphenoxy)propane-sebacic acid] [p(CPP-SA) 20:80] copolymer wafers were conducted in a rat model. Rats were separated into four groups: those receiving 1) polymer, 2) polymer loaded with the chemotherapeutic agent BCNU, 3) drug-loaded polymer with previous tumor implantation, and 4) polymer and an absorbable hemostatic material. A polymer wafer was surgically implanted into the brain of each animal. Residual polymer was harvested at varying times for chromatographic analysis. In vitro effects of pH, mixing, and water availability on degradation were also studied. The results of in vitro and in vivo studies were compared to understand the behavior of polymers in a clinical setting. We found that degradation of p(CPP-SA) initially occurred more slowly in vivo than in vitro. The presence of BCNU, tumor, and absorbable hemostatic material did not affect the ultimate time of polymer degradation in vivo, and the intrinsic polymer degradation time of 1 mm thick p(CPP-SA) 20:80 disks in vivo was 6-8 weeks.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources