Biosynthetic pathway of ribothymidine in B. subtilis and M. lysodeikticus involving different coenzymes for transfer RNA and ribosomal RNA
- PMID: 807911
- PMCID: PMC343492
- DOI: 10.1093/nar/2.7.1043
Biosynthetic pathway of ribothymidine in B. subtilis and M. lysodeikticus involving different coenzymes for transfer RNA and ribosomal RNA
Abstract
Ribothymidine (m5u) in tRNAs of M. lysodeikticus is not derived from methionine. The results indicate that as in tRNAs of B. subtilis a tetrahydrofolate derivative is involved in the formation of m5U, whereas methionine serves as precursor in the biosynthesis of m7G, m1A and m6A. Ribothymidine also occurs in 23S rRNA of B. subtilis and M. lysodeikticus. Approximately 2-3 moles of m5U residues were found per mole of 23S rRNA. In contrast to m5U residues present in tRNAs of B. subtilis and M. lysodeikticus, ribothymidine in 23S rRNA of these organisms and of E. coli is synthesized via S-adenosylmethionine. m6A and m1G, present in E. coli rRNAs, were not detected in rRNAs of (methyl-14C) methionine labeled B. subtilis and M. lysodeikticus.
Similar articles
-
Biosynthesis of ribothymidine in the transfer RNA of Streptococcus faecalis and Bacillus subtilis. A methylation of RNA involving 5,10-methylenetetrahydrofolate.J Biol Chem. 1976 Dec 10;251(23):7649-56. J Biol Chem. 1976. PMID: 826533
-
Inhibition of the tetrahydrofolate-dependent biosynthesis of ribothymidine in tRNAs of B. subtilis and M. lysodeikticus by trimethoprim.FEBS Lett. 1975 May 1;53(2):258-61. doi: 10.1016/0014-5793(75)80032-9. FEBS Lett. 1975. PMID: 806472 No abstract available.
-
Occurrence and biosynthesis of ribothymidine in tRNAs of B. subtilis.FEBS Lett. 1975 Mar 15;52(1):62-5. doi: 10.1016/0014-5793(75)80638-7. FEBS Lett. 1975. PMID: 164388 No abstract available.
-
Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction.J Mol Microbiol Biotechnol. 2000 Apr;2(2):145-77. J Mol Microbiol Biotechnol. 2000. PMID: 10939241 Review.
-
RNA processing and the intervening sequence problem.Annu Rev Biochem. 1979;48:1035-69. doi: 10.1146/annurev.bi.48.070179.005131. Annu Rev Biochem. 1979. PMID: 112912 Review. No abstract available.
Cited by
-
The biological function of m6A methyltransferase KIAA1429 and its role in human disease.PeerJ. 2022 Nov 10;10:e14334. doi: 10.7717/peerj.14334. eCollection 2022. PeerJ. 2022. PMID: 36389416 Free PMC article. Review.
-
Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development.Front Cell Dev Biol. 2022 Mar 14;10:819044. doi: 10.3389/fcell.2022.819044. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35359444 Free PMC article. Review.
-
The dynamic epitranscriptome: N6-methyladenosine and gene expression control.Nat Rev Mol Cell Biol. 2014 May;15(5):313-26. doi: 10.1038/nrm3785. Epub 2014 Apr 9. Nat Rev Mol Cell Biol. 2014. PMID: 24713629 Free PMC article. Review.
-
Occurrence of 1-methyladenosine and absence of ribothymidine in transfer ribonucleic acid of Mycobacterium smegmatis.J Bacteriol. 1979 Mar;137(3):1084-7. doi: 10.1128/jb.137.3.1084-1087.1979. J Bacteriol. 1979. PMID: 374335 Free PMC article.
-
CRISPR-based m6A modification and its potential applications in telomerase regulation.Front Cell Dev Biol. 2023 Jul 14;11:1200734. doi: 10.3389/fcell.2023.1200734. eCollection 2023. Front Cell Dev Biol. 2023. PMID: 37519297 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources