Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Feb 15;2(2):95-105.
doi: 10.1016/s0969-2126(00)00012-5.

Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation

Affiliations
Free article
Comparative Study

Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation

S E Martinez et al. Structure. .
Free article

Abstract

Background: Cytochrome f is the high potential electron acceptor of the chloroplast cytochrome b6f complex, and is the electron donor to plastocyanin. The 285-residue cytochrome f subunit is anchored in the thylakoid membrane of the chloroplast by a single membrane-spanning segment near the carboxyl terminus. A soluble redox-active 252-residue lumen-side polypeptide with native spectroscopic and redox properties, missing the membrane anchor and carboxyl terminus, was purified from turnip chloroplasts for structural studies.

Results: The crystal structure of cytochrome f, determined to 2.3 A resolution, has several unexpected features. The 252-residue polypeptide is organized into one large and one small domain. The larger heme-binding domain is strikingly different from known structures of other c-type cytochromes and has the same fold as the type III domain of the animal protein, fibronectin. Cytochrome f binds heme with an unprecedented axial heme iron ligand: the amino terminus of the polypeptide.

Conclusion: The first atomic structure of a subunit of either the cytochrome b6f complex or of the related cytochrome bc1 complex has been obtained. The structure of cytochrome f allows prediction of the approximate docking site of plastocyanin and should allow systematic studies of the mechanism of intra- and inter-protein electron transfer between the cytochrome heme and plastocyanin copper, which are approximately isopotential. The unprecedented axial heme iron ligand also provides information on the sequence of events (i.e. cleavage of signal peptide and ligation of heme) associated with translocation of the cytochrome across the membrane and its subsequent folding.

PubMed Disclaimer

Publication types

LinkOut - more resources