Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1975 Sep;66(3):357-82.
doi: 10.1085/jgp.66.3.357.

Absorption spectra and linear dichroism of some amphibian photoreceptors

Comparative Study

Absorption spectra and linear dichroism of some amphibian photoreceptors

F I Hárosi. J Gen Physiol. 1975 Sep.

Abstract

Absorption spectra and linear dichroism of dark-adapted, isolated photoreceptors of mudpuppies, larval and adult tiger salamanders, and tropical toads were measured microspectrophotometrically. Spectral half-band width, dichroic ratio, and transverse specific density were determined using averaged polarized absorptance spectra and photomicrographs of seven types of rod outer segments. Two classes of cells were found, one with higher specific density and dichroic ratio, associable with the presence of rhodopsins, the other, lower in both quantities, associable with porphyropsins. Relationships were derived to calculate the product of molar concentration and extinction coefficient (CEmax) from specific density and dichroic ratio. By utilizing the hypothesis of invariance of oscillator strengths and measured half-band widths, Emax values were independently determined, permitting the calculation of C. The pigment concentration for all cells tested was about 3.5 mM. The broadness of green rod pigment spectra is correlated with reduced molar absorptivity and reduced cellular specific density. Estimation of physiological spectral sensitivities is discussed. Based on dichroic ratio considerations, a model is proposed for the orientation of retinals in situ which could account for the apparent degree of alignment of transition moments. In the chosen orientation, the ring portion of conjugation becomes primarily responsible for axial extinction. Reduced dichroism of dehydroretinal-bearing cells can thus result from the extended ring conjugation of chromophores. Some inferences derivable from the model are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types