Fragments of human fibroblast collagenase: interaction with metalloproteinase inhibitors and substrates
- PMID: 8086430
- DOI: 10.1016/0167-4838(94)90173-2
Fragments of human fibroblast collagenase: interaction with metalloproteinase inhibitors and substrates
Abstract
On purification, active human fibroblast collagenase breaks down by an autolytic mechanism into two major forms (M(r) 22,000 and M(r) 27,000) and one minor form (M(r) 25,000). The ability of human collagenase to bind to the tissue inhibitor of metalloproteinases (TIMP) and to TIMP-2 resides mainly in the active site area of the 22,000 M(r) N-terminal domain of the molecule, but the 27,000 M(r) C-terminal domain also has a role in stabilizing these interactions. The 22,000 M(r) fragment is able to form a complex with TIMP and TIMP-2 which is stable to gel filtration in a similar manner to the whole molecule, but no such complexes are formed by the 27,000 M(r) fragment. Complex formation with the whole molecule is prevented by EDTA and by 1,10-phenanthroline demonstrating the importance of the active site; additionally TIMP and TIMP-2 will compete with a reversibly bound peptide hydroxamic acid inhibitor for the active site. The inhibition of enzyme activity by TIMP and TIMP-2 is less pronounced in the 22,000 M(r) fragment when compared to the whole molecule and a similar effect is seen with the peptide hydroxamic acid inhibitor and also with alpha 2-macroglobulin, suggesting a role for the C-terminal domain in interacting with these inhibitors. Whole molecule collagenase and the 27,000 M(r) fragment bind to type 1 collagen-Sepharose while the 22,000 M(r) fragment exhibits no such binding, suggesting that the C-terminal domain has an important role in the binding of enzyme to substrate.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
