Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 May;18(1):57-66.
doi: 10.1016/0920-1211(94)90033-7.

Vigabatrin-induced lesions in the rat brain demonstrated by quantitative magnetic resonance imaging

Affiliations

Vigabatrin-induced lesions in the rat brain demonstrated by quantitative magnetic resonance imaging

G D Jackson et al. Epilepsy Res. 1994 May.

Abstract

Rats treated with 250 mg/kg/day vigabatrin showed lesions detected by magnetic resonance imaging (MRI) in the cerebellar white matter in vivo. No lesions were seen in any control animal. As well as these visually apparent lesions, quantitative T2 relaxation time measurements showed a 12 ms increase in cerebellar white matter from 66 +/- 4 ms (SD, n = 5) to 78 +/- 2 ms (SD, n = 7). This region, as expected from previous studies, showed microvacuolation on post-mortem pathology. Additionally, significant increases in T2 relaxation times of 4-9 ms were found in the cerebral cortex, thalamus and hippocampus. Microvacuolation was not detected by post-mortem histopathology in the cerebral cortex or hippocampus, however, immunohistochemical staining for glial fibrillary acidic protein and for macrophages (ED1) showed reactive astrocytes (gliosis) and in more severe cases, microglial proliferation in these regions; such changes were also seen in association with the microvacuoles. No T2 increase was found in the cerebellar grey matter or olfactory bulbs. MRI techniques, including T2 relaxometry, are therefore sensitive for detecting vigabatrin-induced changes, including reactive astrocytosis, microglial proliferation and vacuolation in the rat brain. These results suggest that quantitative MRI should be a useful method for evaluating whether vigabatrin has neuropathological effects when given to patients.

PubMed Disclaimer

Publication types

LinkOut - more resources