Chaperonins and protein folding: unity and disunity of mechanisms
- PMID: 8098534
- DOI: 10.1098/rstb.1993.0028
Chaperonins and protein folding: unity and disunity of mechanisms
Abstract
Chaperonin-facilitated folding of proteins involves two partial reactions. The first partial reaction, the formation of stable binary complexes between chaperonin-60 and non-native states of the target protein, is common to the chaperonin-facilitated folding of all target proteins investigated to date. The structural basis for this interaction is not presently understood. The second partial reaction, the dissociation of the target protein in a form committed to the native state, appears to proceed by a variety of mechanisms, dependent upon the nature of the target protein in question. Those target proteins (e.g. rubisco, rhodanese, citrate synthase) which require the presence of chaperonin-10, also appear to require the hydrolysis of ATP to bring about the dissociation of the target protein from chaperonin-60. With one exception (pre-beta-lactamase) those target proteins which do not require the presence of chaperonin-10 to be released from chaperonin-60, also do not require the hydrolysis of ATP, since non-hydrolysable analogues of ATP support the release of the target protein in a state committed to the native state. The question of whether or not chaperonin-facilitated folding constitutes a catalysed event is addressed.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials