Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993 Mar 29;339(1289):335-41.
doi: 10.1098/rstb.1993.0032.

The role of molecular chaperones in protein transport into the endoplasmic reticulum

Affiliations
Review

The role of molecular chaperones in protein transport into the endoplasmic reticulum

T Dierks et al. Philos Trans R Soc Lond B Biol Sci. .

Abstract

In eukaryotic cells export of the vast majority of newly synthesized secretory proteins is initiated at the level of the membrane of the endoplasmic reticulum (microsomal membrane). The precursors of secretory proteins are not transported across the microsomal membrane in their native state. Typically, signal peptides in the precursor proteins are involved in preserving the transport-competent state. Furthermore, there are two alternatively acting mechanisms involved in preserving transport competence in the cytosol. The first mechanism involves two ribonucleoparticles (ribosome and signal recognition particle) and their receptors on the microsomal surface and requires the hydrolysis of GTP. The second mechanism does not involve ribonucleoparticles and their receptors but depends on the hydrolysis of ATP and on cis-acting molecular chaperones, such as heat shock cognate protein 70 (hsc 70). In both mechanisms a translocase in the microsomal membrane mediates protein translocation. This translocase includes a signal peptide receptor on the cis-side of the microsomal membrane and a component that also depends on the hydrolysis of ATP. At least in certain cases, an additional nucleoside triphosphate-requiring step is involved which is related to the trans-acting molecular chaperone BiP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources