Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul-Aug;21(4):587-97.

Chemical, enzymatic, and human enantioselective S-oxygenation of cimetidine

Affiliations
  • PMID: 8104117

Chemical, enzymatic, and human enantioselective S-oxygenation of cimetidine

J R Cashman et al. Drug Metab Dispos. 1993 Jul-Aug.

Abstract

The S-oxygenation of cimetidine was investigated using achiral chemical and chiral chemical and enzymatic S-oxygenation procedures. The products of the reactions were thoroughly characterized by spectral, chiroptical, chromatographic, and stereochemical correlation methods. S-Oxygenation by the Kagan method or in the presence of pig liver microsomes or pig liver flavin-containing monooxygenase (FMO) (form I) all gave essentially identical enantioselectivity: the average enantiomeric excess was -13.4% and the stereopreference was for formation of (+)-cimetidine S-oxide in a ratio of (+)56.7%:(-)43.3%. The profile of immunoreactivity and the effect of metabolism inhibitors on cimetidine S-oxide formation in the presence of pig liver microsomes were consistent with a role of FMO (form I) in enantioselective (+)-cimetidine S-oxide formation. Administration of cimetidine to seven healthy male volunteers provided pharmacokinetic parameters for cimetidine and cimetidine S-oxide that were typical of those for previously reported studies. The urinary cimetidine S-oxide was isolated and the stereopreference was for formation of (-)-cimetidine S-oxide in a ratio of (+)25.5%:(-)74.5%. In good agreement with the enantiomeric enrichment values observed for the adult human urinary metabolite, the relative configuration of cimetidine S-oxide formed in adult human liver microsomes was (+)-15.8%:(-)-84.2%. Because the enantioselectivity and profile of immunoreactivity and the effect of metabolism inhibitors on cimetidine S-oxygenation in adult human liver microsomes are consistent with a role of FMO (form II) in cimetidine S-oxide formation and because the enantioselectivity of cimetidine S-oxide observed in adult humans is similar, we conclude that in vivo, cimetidine is S-oxygenated principally by FMO (form II).

PubMed Disclaimer

Publication types

LinkOut - more resources