Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993 Jul-Aug;6(4):201-13.
doi: 10.1016/0891-0618(93)90042-3.

What do retinal müller (glial) cells do for their neuronal 'small siblings'?

Affiliations
Review

What do retinal müller (glial) cells do for their neuronal 'small siblings'?

A Reichenbach et al. J Chem Neuroanat. 1993 Jul-Aug.

Abstract

Müller (radial glial) cells are the predominant glia of the vertebrate retina. They arise, together with rod photoreceptor cells, bipolar cells, and a subset of amacrine cells, from common precursor cells during a late proliferative phase. One Müller cell and a species-specific number of such neurons seem to form a columnar unit within the retinal tissue. In contrast, 'extracolumnar neurons' (ganglion cells, cone photoreceptor cells, horizontal cells, and another subset of amacrine cells) are born and start differentiation before most Müller cells are generated. It may be essential for such neurons to develop metabolic capacities sufficient to support their own survival, whereas late-born ('columnar') neurons seem to depend on a nursing function of their 'sisterly' Müller cell. Thus, out of the cell types within a retinal column it is exclusively the Müller cell that possesses the enzymes for glycogen metabolism. We present evidence that Müller cells express functional insulin receptors. Furthermore, isolated Müller cells rapidly hydrolyse glycogen when they are exposed to an elevated extracellular K+ ion concentration, a signal that is involved in the regulation of neuronal-glial metabolic cooperation in the brain. Müller cells are also thought to be essential for rapid and effective retinal K+ homeostasis. We present patch-clamp measurements on Müller cells of various vertebrate species that all demonstrate inwardly rectifying K+ channels; this type of channel is well-suited to mediate spatial buffering currents. A mathematical model is presented that allows estimation of Müller cell-mediated K+ currents. A simulation analysis shows that these currents greatly limit lateral spread of excitation beyond the borders of light-stimulated retinal columns, and thus help to maintain visual acuity.

PubMed Disclaimer

Publication types

LinkOut - more resources