Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul 20;238(2-3):157-64.
doi: 10.1016/0014-2999(93)90843-7.

Regulation of striatal aromatic L-amino acid decarboxylase: effects of blockade or activation of dopamine receptors

Affiliations

Regulation of striatal aromatic L-amino acid decarboxylase: effects of blockade or activation of dopamine receptors

M Y Zhu et al. Eur J Pharmacol. .

Abstract

Previous experiments have shown that blockade of dopamine D1 or D2 receptors by SCH 23390 or pimozide increases aromatic L-amino acid decarboxylase (AADC) activity in the rat striatum and the mesolimbic system. This study examined whether other dopamine receptor antagonists affect AADC activity and if there is an interaction between dopamine D1 and D2 receptor blockade on AADC activity. The possible effect of dopamine receptor agonists on AADC activity has been investigated as well. Administration of cis-flupenthixol (0.5 and 1 mg/kg) increased striatal AADC activity (by 25 and 26% above controls) and similar effects were observed with remoxipride (0.5-4 mg/kg) (by 18-27% above controls). Pretreatment with cycloheximide (10 mg/kg) did not change the increases produced by cis-flupenthixol (0.5 mg/kg). The administration of non-neuroleptic trans-flupenthixol did not change AADC activity. Combined treatment with SCH 23390 (0.1 mg/kg) and remoxipride (0.5 mg/kg), but not combination of SCH 23390 (0.1 mg/kg) and pimozide (0.3 mg/kg), showed higher increases of AADC activity than by the individual treatments, suggesting an interaction between the effects of the two drugs. Bromocriptine, but not (-)-quinpirole and d-amphetamine, significantly reduced the striatal AADC activity by 23% at the dose of 10 mg/kg. The results further demonstrate that AADC is a regulated enzyme in the rat brain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources