Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct;105(4):1009-16.
doi: 10.1016/0016-5085(93)90943-7.

Enteric inhibitory neural regulation of human colonic circular muscle: role of nitric oxide

Affiliations

Enteric inhibitory neural regulation of human colonic circular muscle: role of nitric oxide

K D Keef et al. Gastroenterology. 1993 Oct.

Abstract

Background: Nitric oxide and an apamin-sensitive transmitter may both contribute to neural inhibition in the human colon. The present study investigated the role of NO in regulating spontaneous rhythmic contractions and examined NO-dependent and independent components of neurally evoked hyperpolarization in the human colon.

Methods: Mechanical and electrical activity were recorded from isolated circular muscle strips.

Results: Rhythmic contractions were inhibited by nerve stimulation. This response was reduced by apamin, oxyhemoglobin, and L-NG-nitro arginine methyl ester (L-NAME). Electrical recording revealed two components of neurally evoked hyperpolarization: a fast hyperpolarization resulting from a single stimulus and a sustained hyperpolarization that developed with repetitive stimulation. Fast hyperpolarization was not affected by L-NAME or oxyhemoglobin but was significantly reduced by apamin. The sustained hyperpolarization was reduced by L-NAME or apamin. Exogenous NO and the P2y receptor agonist 2-methylthio adenosine 5'-triphosphate (2-MATP) inhibited spontaneous contractions and produced hyperpolarization. Apamin reduced the effects of 2-MATP but not those of NO.

Conclusions: The results support the concept that the inhibitory neurotransmission in the human colon involves two transmitters. A single stimulus results in an apamin-sensitive response. With multiple stimuli, a NO-dependent response develops and sums with the apamin-sensitive mechanism, producing sustained hyperpolarization and inhibition of contractions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources