Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan;119(1):97-114.
doi: 10.1016/0025-5564(94)90006-x.

The computation of R0 for discrete-time epidemic models with dynamic heterogeneity

Affiliations

The computation of R0 for discrete-time epidemic models with dynamic heterogeneity

M C De Jong et al. Math Biosci. 1994 Jan.

Abstract

An explicit algorithm is given for the computation of the basic reproduction ratio R0 (or the net reproduction ratio R in the case of a not wholly susceptible population) for a class of discrete-time epidemic models. These models allow for a finite number of different individual types, type changes at fixed type-dependent intervals, arbitrary contact intensity between individuals of the various types, and variable infectivity. The models reflect the situation where an infectious disease spreads in a population of animals that are reared in different stables on farms. In addition, it is shown analytically that the reproduction ratio depends, for any given type, on the product of the susceptibility and the total infectivity of that type and not on these factors separately. We call this product the transmission weight of the type. The maximum overall transmission weight gives an upper bound for the reproduction ratio, irrespective of the particular submodels for type change and contact structure. Reduction of all transmission weights below 1, by vaccination or some other control measure, will result in R < 1 and will hence lead to eradication of the disease.

PubMed Disclaimer

LinkOut - more resources